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Notation

a semi-major axis

CD coefficient of drag

C Im'S Im spherical harmonic coefficients

D acceleration due to drag

e eccentricity

E eccentric anomaly

f ellipticity

h ellipsoidal altitude

i inclination

JD Julian Day

J k zonal harmonics of the geopotential

m mass

M mean anomaly

n mean motion

* r radius

R radius of a planet as a function of latitude

Re  equatorial radius of planet

RI disturbing potential function due to a third body

Sangle between position vector of third body and
satellite (for third body calculations)

cross-sectional area (for drag problems)

t time

T time in Julian centuries

Tk (x) Chebyshev polynomial

3 V geopotential function

velocity

z ellipsoidal altitude used for density calculations
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I ballistic coefficient

Aa secular change in semi-major axis over one period

S Ae secular change in eccentricity over one period

Ah change in ellipsoidal altitude during an arc
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product of universal gravitational constant and mass

p vector between the third body and satellite

3 p density

wargument of periapsis

V true anomaly
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Abstract

This thesis identifies the mean orbital elements which produce arcs

of minimum altitude variation over an oblate planet with an

axi-symmetric gravitational field. Such orbits are useful for

surveillance or scientific study missions using optics with fixed focal

I lengths.

Both Earth and Mars are considered and the optimum eccentricity is

found as a function of argument of periapsis and inclination for two

values of semi-major axis for each planet. The results are curve fit

to develop a single equation which identifies the eccentricity needed to

produce an arc of minimum altitude variation given the argument of

periapsis, inclination, semi-major axis, ellipticity of the planet,

U equatorial radius, and the zonal J2 "

Once arcs with minimum altitude variations are identified, the

properties of the arcs are considered. The mid-latitude, altitude,

duration, and latitude range of the arcs are found as a function of

argument of periapsis and inclination for various planet and semi-major

axis combinations.

The secular change in mean orbital elements is considered to

determine the most stable orbits. Secular changes in orbital elements

due to the geopotential, drag, and third body effects are considered.

I The velocity impulse needed to return the satellite to the original

orbit from the perturbed orbit is found and used to determine stability.

Identifying orbits which require minimum station keeping fuel allows

planners to select orbits permitting longer useful operational life.

U
xiiI
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ORBITS CONTAINING ARCS OF MINIMUM ALTITUDE VARIATION

I. Introduction

IBackground

3 Mean orbital elements may be determined to produce orbits about an

oblate planet which contains arcs of constant altitude[61. The arcs of

3 constant altitude may be positioned over specified latitude ranges --

this ability is useful for surveillance or scientific study missions

3 using optics with fixed focal lengths. This thesis focuses on finding

orbits with arcs of constant ellipsoidal altitude for axi-symmetric

planets (only zonal harmonics are considered in the geopotential).

3 Because of these restrictions, the longitude of the ascending node is

not considered as a variable. Given the required orbit, arcs of nearly

3 constant altitude may be identified. The eccentricity becomes a

function of the required inclination, argument of periapsis, semi-major

5 axis, and planet parameters (ellipticity, equatorial radius, and

geopotential). The independent variables are also functions of the

* desired altitude and latitude of the arc.

Mean orbital elements which produce stable orbits need to be

considered. Missions requiring these types of orbits will typically

3 have low altitudes, so drag needs to be addressed. Kalil [6] presents

a first order analysis neglecting drag. Drag primarily affects

3 eccentricity and semi-major axis; consequently, it can't be neglected

for missions longer than one orbital period. The change in semi-major

axis due to drag will act to reduce the altitude of the arc of constant

altitude in a few orbits. Eventually, reducing the semi-major axis will

result in an orbit which no longer contains an arc of constant altitude;

I
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I however, the orbit is much more sensitive to a change in eccentricity,

inclination, or argument of periapsis -- as the drag reduces the

eccentricity, the resulting orbit will no longer contain an

5 arc of constant altitude.

Definition of Constant Altitude Arc

A constant altitude arc is defined for the purpose of this thesis

* as a portion of an orbit during which the ellipsoidal altitude of the

satellite changes only slightly with time.

I
r 2 dh

0 = Ah - 2 - dtIt

5 Objective

Mean orbital elements of orbits containing constant altitude arcs

are identified for both Earth and Mars. The planets' ellipticity, zonal

harmonics up to the third order, atmospheric drag, and third body

5 effects are considered. For a given planet, the required orbital

elements are identified to achieve a desired altitude at a given

latitude. Secular changes in the mean orbital elements are then

3 considered in order to locate the most stable orbits.

I A search method is employed to determine the eccentricity, as a
function of argument of periapsis and inclination for several cases

(varying the following parameters: planet, semi-major axis, and the

3 perturbative accelerations considered). First, the two-body problem is

considered and an empirical relationship is developed which determines

5 eccentricity as a function of argument of periapsis and a

non-dimensional grouping of ellipticity, equatorial radius, inclination,,

I
2
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I and semi-major axis. Next, additional perturbative accelerations are

addressed [1,2,8,13,171. For the short term considered (one period),

the J2 term of the geopotential causes the most significant change. An

3 empirical relationship to predict the change in eccentricity from the

two-body results is determined as a function of argument of periapsis

3 and a non-dimensional grouping of J2' inclination, semi-major axis, and

the equatorial radius.

3 The choice of w, i, and a which minimizes secular variations is

then considered. Secular perturbations due to third bodies[7], zonal

harmonics up to sixth order[12], and atmospheric drag (including a

3 rotating atmosphere[16]) are addressed. The sum of the velocity

impulses needed to correct the secular changes in the orbit caused by

5 perturbations is calculated and used in identifying the most stable

orbits.

3



II. Theory

Satellite Motion

In order to determine orbital elements of orbits which contain arcs

of minimum altitude variation, the motion of the satellite must be know.

Kepler identified satellite position and velocity under the influence of

a central body modeled as a point mass. This two-body solution

identifies the position of the satellite using the six classical orbital

elements (semi-major axis (a), eccentricity (e), inclination (i),

argument of periapsis (w), longitude of the ascending node (0), and true

anomaly (v)) . Perturbations from two-body motion due to small

accelerations may be calculated. Averaging the change in orbital

elements over one period eliminates periodic short term variations [151.

The secular changes in orbital elements identify changes which must be

corrected to return the satellite to the original orbit. This section

will present two-body motion and perturbations from the two-body motion

due to non-spherical gravitational fields, third bodies, and atmospheric

drag. The secular changes in classical orbital elements will be

presented for each perturbing acceleration considered.

The equations of motion presented in this section will be evaluated

with various combinations of classical orbital elements to identify

combinations of elements which produce orbits with minimum altitude

variation arcs.

The secular variations of classical orbital elements presented in

this section will be evaluated for orbits containing arcs of minimum

altitude variation and will be used to determine the velocity impulse

required to maintain the satellite in the desired orbit.

4



Equation (1) may be solved to determine the position and velocity

of a satellite

r = - = a ()

where a is the sum of accelerations acting on the satellite and V is the

potential function. The two-body solution and perturbations from

two-body motion due to a non-spherical gravitational field, third body,

and drag will now be presented.

Two-Body Motion. For two-body motion, equation (1) may be

rewritten by recognizing VV = u/r2

r + Yr -=0 (2)
3

r

where r is the position of the satellite, and p is the product of the

universal gravitational constant and the mass of the planet. Equation

(2) may be solved to provide the satellite's distance from the center of

the planet. Equation (3) presents Kepler's equation:

r = a(l - e 2)/[l + e cos(v)] (3)

Where r is the distance from the center of the planet, a is the

semi-major axis of the orbit, e is the eccentricity, and v is the true

anomaly.

Geopotential. The geopotential function for a spherical

gravitational field is -p/r . The geopotential function for a

non-spherical gravitational field is presented in equation (4) [1]

5



2=0 rn=0

___ ARIFJ C~ cmosH + S ImsinH 2-rn even (5

t a(21 2t)! -m-2t.

F Hcmp;i= Z '(-~ 1m-tU221t sn I-n d

X m CssI(_)g-k (p-m2ttsg)s (6)

g,- ax[O,p-t-rn-sj

twa k , p>k

By considering only zonal harmonics, equation (6) may be simplified:

v -Z V20  (7)

2-0

6



Rk

u (22-2t)! 12t

0 r 0 _ t! (2-t)! (2-2t)! 22(2-t)
t=O0

1-2t

X (2-t) k+c [ cos(2-2t-2c)(w+v) 2 evencsinC2-2t-2c)( +) I odd (8)

C=0

where

k []
Recognizing

m (n nm)

:B cosx =COS-X

-sinx =f sin-x

3 and defining J2 as -C20 results in further simplification of

equation (8).

gR k_ _ _ __ _ _

V = e i (22-2t)! 2-sin 2tI
r0 t! (2-t)! (2-2t)! 2

rt-0 2Ot

p +1 ) (2p)~ (9)k~
+ 2 (_)k+c cos[(2p-2c )(co+v)J

X 2p1 (-1)t sin(+L') c sin[(2p-2c+l)(lo+v)] ( )
p 1) ( t c JO

where the top choices in equation (9) are used when 2 is even, bottom

choices are used when I is odd, and p - k-t

Merson [12] has averaged the perturbations due to zonal harmonics

over one period, his results are presented in equations (10) and (11).

The equations for change in argument of periapsis (w) and longitude of

ascending node (0) are not valid if the inclination (i) is zero; also,

the equation for change in argument of periapsis is not valid if the

eccentricity (e) is zero.

7
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For semi-major axis:

Aa - -(18/4)J 22 R 4a -3(1-e2 ) 5esinw(l+ecosw) 2(4-5sin 2i) (10)

Changes in the other orbital elements are described by equation (11)

where Ax represents either Ae, Ai, Aw, or AfQ; Xk represents ek, ik, 'k'

or "k (k = 2,3,4,5,6); and x22 represents e22' i22, W22' or 022" For

example, to calculate the secular change in eccentricity over one

period, replace Ax with Ae, xk with ek, and x 2 2 with e 22 in equation

(11). The equations used to calculate the variables in equation (11)

are presented below for each orbital element.

Ax 2r[ZJk(R/p) xk + J2 2(R/p)4 x221 (11)

For eccentricity:

=03

S (-e 2 sini cos: (4-5sin2 12

e4 5 (1-e 2)(6-7sin 2,)sin 2i e sin2w
4= 96

e 15 2242

eI -L (l-e2)sini[(8-24sin 2i+21sin 4i)(8+6e 2)cosw

2 2.52

+ 7(8-9sin 2i)sin 2i e2 cos3w]
_52__5 2 2242

e 52 (1-e 2)sin 2i[(16-48sin 2i+33sin 4i)(10+Se 2)sin2w

+ 3(l0-llsin 2i)sin 2i e3 sin4w]
3.

e - sinw[6(4-5sin 2i)(l+ecosw)
2

- sin 2i(l-e 2 )((16-20sin2i)-(14-15sin2 i))ecosw]

8



For inclination:

i 2  0o

3 2
i 3 8 e cosi coswo (4-Ssin i)

-45 2 2 2j 4 - e (6-7sjn i)sin i sin2wo

i 15 e cosi[(8-24sin 2 i2sn4 i)862)c
5 256

+ 7(8-9sin 2i)sin 2i e 2cos3wo]

I 2 e sin2i [(16-48sin 2i+33sin 4i)(1O+5e 2)sin2co

+ 3(10-ilsin 2i)sln 2 1 e 3sin4wo]

i2  - - sin.2i [(32-4Qsin 2i)e sinw)

3+ (-14+l5sin 2i)e 2 sn

3 For longitude of the ascending node (ioO):

0 - (3/2)cosi

1)- (3/8)(4-15 sin 2 i) e sinw coti

0~ - L5cosi[(4-7sin 2i)(6+9e 2)-3(6-l4sin 2i)e cos2o]
15 2946

(I - 15 coti[(8-84sin 2i+33sin 4i)(8+6e 2)e sinw

2 35
+ 7(8-l5sin 2i)e 3sin3w)

a - 10524 coi[O(8-36sin 2i+33sin 4 )(8+40e2 +15e 4

-25(16-96sin 2 +99sin 4i)(4+2e 2)e 2cos2wo

-15(20-33sin 
2 i) sin 2 i e4COs4woj

0 2 (3/32)cosi[(12-B0sin 2 0 1(-1sn 2 1ecosw

+ (-4-Ssin 2i)e 2+ 2(-7+l5sin 2i)e 2cos2w]

9
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I For the argument of periapsis (io0, eo0):

I2 - (3/4)(4-5sin 2i)

3 " (3/8)e- sinwsini[(4-5sin 2i) + (35cos
2 i - 4cosec 2i)e2I = - 15242 4

4 [- (16-62sin 2i+49sin 4 i) + (6sin 2i-7sin 4i)cos2w
289 . 4.,in

(18 - 63sin2i + i sin 4)e

I 3Ssn 2  
-63.4 2.

(-6 + 35sin2 - 2-sin i)e2cos2w]

105 -1 2,_2si 4usi2.
5 16e sinwcoseci + 2sin2i n sin

(4 87 . 2 67 . 4. 357. 6.1 2f - -sin i -sin i - -,iin I e

+ -I + 2sin 2,sin 4i e2cos2w

3 2 267 . 4. 165 . 6 4

+ (7 -sin i + -sin . sin e

6 (1 -- i8sin i + -sin --sin

+ (2 6sin2i + -sn i sin 2 i cos2l

43. 2 109 . 4. 121 .6,2

+611 -- sn i + -,-sin e

25l2, - -459 .4 561.6.

2+25sini - ,sin 4 i + -6sn i e2cos2w

+ ( 1- -sin 2) sin 4i e2 cos4w
i 2 .2. 99 .4. 429 6.)4

+- --Lsin 2, - -sin 4 - -sin 6ie
L 2 4 32 j

2 16 16242

-s1 + n2 -21 sl43n 41sin2 1 e4 cos4
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22 (-2 + sin i - isin Iecosw3 9 . 2[.- 445 . +[ 2 + 3 n 21 + in 4, cos2w

+ L '- 4 .nn i ecos + 1 + 2sin 2i ecos3w

32 . 15.41 2 79 2. 45 4 2 2

+ sin i - -sin i e - -sin i + -sin i e cos2
(T 32 (T12 2 4s' 16

i These equations will be used to determine the secular changes in

orbital elements due to perturbations caused by the geopotential. The

changes will be combined with secular changes due to third bodies and

atmospheric drag to determine the velocity impulse required to keep a

satellite in the desired orbit which contains a constant altitude arc.

Third Body. For Martian cases, perturbations due to the Sun will

I be evaluated, while perturbations due to both the Sun and Moon will be

evaluated for Earth orbits. The analysis presented below is applicable

to any third body. Figure 1 demonstrates the relationship between the

central body, the satellite, and the third body.

S Nhid BoduI P1 Wr

Figure 1. Geometry for Third-Body Perturbations

The position of the satellite with respect to the central body is r, r'

is the position of the third body with respect to the central body, and

p is the position of the third body with respect to the satellite. The

angle between r' and r is S, and p - rf - r

1i



I

I Equation (12) presents the disturbing function due to a third body

where the perturbing accelerations due to the third body are VR'.

R' = 33 (12)
r

Recognizing

5
p = (r'.r)

= r'[l + (r/r')
2 - 2(r/r')cosS]

112

and

r' r = r'rcosS

results in equation (13), an expansion of equation (12)

R' = [ + r 2r coss)- rcosS (13)

The binomial expansion is employed to expand the first term in

equation (13)

1[1 + (r/r') 2 _ 2(/'cs)*s 5 (n n.5)(_l)n[ (r/r) 2_ 2(r/r' )cs

n=O

Neglecting terms of (r/r') equal to or greater than third order results

in an approximation to equation (12). For the case of Earth's moon, if

the satellite orbit remains within six Earth radii, (r/r') 3 < .001. For

perturbations due to the Sun this term will be much less than unity for

both Earth and Mars. Equation (14) incorporates these approximations to

equation (12)

12



I

R_ 13 +~ (3cos2S - 1) (14)
r 2r3

Substituting 3 = n'2a in equation (14) and observing V( 3/r')-0

results in a simplified potential equation for a third body

R' = (a2nP2/2)(r/a) 2(a'/r') 3(3cos 2S - 1) (15)

U Kaufman [7] has developed the secular change in orbital elements due to

third body perturbations. Equations (16) - (20) are the averaged change

in orbital elements for one period. Equations (18) and (19) are not

* applicable when the inclination is zero.

IAa = 0 (16)

Ae = (-15w) (l-e2) "5 (n'/n)2 efi(a'/r')3  (17)

Ai = -6w (n'/n)
2 (1-e2) -

'
5 (sini) -1 (a'/r')3

x [6(i+4e 2 ) + 6f(l-e 2 ) - 5afe 2cosi]

AO = 6w (n'/n)2 (l-e2)
-*5  (sini)

"I  (a/rl)3

x [a7(1+4e 2)sinw + fy(l-e 2)cosw]

Aw = 6w (n'/n)2 (a'/r')3 (l-e 2) 5  
(20)

x ((42_-i 1) - (ycosi/sini)(l-e 2)[a(l+4e 2)sinw + P(l-e 2)cosw])

* where:

[cosn' cosZ'
r sink]cosZ'

sinD'cost'r cosOcosw - sin0sinwcosi 1
I P - sinfcosw + cos[Isinwcosi

sinicosw

-coscosw - sinfsinwcosi 1
Q - -sincosw + cosfsinwcosi

sinicosj

sinfls ini
- -cos~sini

cosi

13
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1 -sinocosw - cosisinwcosiP-[cosocosw - sinnsircs

I0
sin)cosw - cosfasinwcosi 1

= -cosOcosw - sinsinwcosiI o

I = ro.Q

Equations (16) through (20) will be used to calculate the average

change in orbital elements over one period due a third body.

Atmospheric Drag. The acceleration due to drag acts in the

opposite direction from the velocity of the satellite with respect to

the atmosphere and is modeled by equation (21):

D=V 2 P (21)

where

# - CDS/2m

and CD is the drag coefficient, S is the cross-sectional area of the

satellite normal to the velocity of the satellite with respect to the

atmosphere, m is the satellite mass, p is the atmospheric density, and

V s is the velocity of the satellite relative to the velocity of the

atmosphere.

The atmospheric density at a given location doesn't remain

constant, but changes due to the time of day, solar activity, and

season. Consequently, modeling the atmosphere accurately is extremely

14



I difficult and the best results are obtained by employing models or

tabulated mean values which vary with time. However, the atmospheric

density may be approximated as decreasing exponentially with increasing

3 altitude (see equation (22)).

p = POe  (22)

I where p0 is atmospheric density at some reference height above the

surface of the planet, z is the actual altitude minus the reference

altitude, and H is the scale height of the atmosphere.

The velocity term in equation (21) is the velocity of the satellite

with respect to the atmosphere. A technique to approximate the velocity in

3 terms of orbital parameters is presented [19:275-276]. Let

I *=v +v

s a

I where V is the velocity of the satellite with respect to an inertial

reference frame with its origin at the center of the planet, V is the

velocity of the satellite relative to the velocity of the atmosphere,

* and V a is the velocity of the atmosphere with respect to an inertial

reference frame with its origin at the center of the planet.

Assuming the angular velocity of the atmosphere (wa) is uniform

about the north-south axis results in an atmospheric velocity in terms

3 of the geocentric latitude (0) and satellite radius (r).

I V - rco coso (24)a a

I If 0' is the angle between V and V then

I 15

I
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I V 2 _ V2 + V 2 _ 2W coso' (25)s a a (5

The atmospheric velocity vector is in the local horizontal plane and the

3 satellite's velocity vector is almost in the local horizontal plane.

The angle between the two vectors (V,') may be approximated by the angle

3between the projection of the satellite's velocity vector onto the local
horizontal and the atmospheric velocity vector (0)[9]. Consequently,

3 using the law of cosines from spherical trigonometry,

I cosO cosi

Va cosO' = Va cosb = rwa cosi (27)

The satellite's velocity relative to the atmosphere may be approximated

in terms of its velocity with respect to an inertial reference frame,3 orbital elements, and angular velocity of the atmosphere.

V V 2  -+ V 2 _ 2VV cosO

s a a
V2 + r 2 2 cos2 - 2Vrw cosi

a a2

= V2[1 - (rwa/V) cosi]2 + r2w 2(Cos2 - Cos 2i)

I V 2 may be further approximated by recognizing r2 a < .005 V2 [9]:

V 2 [1 (rwa/V)cosi] 2  (28)

3 Consequently,

D - p#/ 2[ 1 (ra /V) cos!]2  (29)

Sterne [16] has considered secular changes in the classical orbital

elements due to a rotating atmosphere about an oblate planet. Equations

1
16
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1 (30) - (34) present the secular changes in orbital elements over one

* period.

Aa = - 2fa 2 E 1/2  (1 - dfi-JdE (30)
0J  E1

Ae = - 2(le2)Oa 2  E 1
2  1-d'-)p El1/2

x [cosE - .5d(El)(2cosE-e-ecos E)/(l-e2)] dE

Ai = .5(w /n) asini(l-e 2)_ 50 21p El5/2 E21/2 i d E 1

a of 1 2 1 LEJ

x (1+ cos2 E1 2 [(2-e
2cos 2E - 1 + 2e2 - 2ecosE]) dE (32)

AQ .5(w /n).asi5(l-ef2)  5 p (l-e2 cos 2E) 1 d

2 2(33)

x [2e - 1 - 2ecosE +(2-e 2)cos2 E 
dE

A= -cosi An (34)

where

E- (I - ecosE)

E2 = (1 + ecosE)

d - (w a/n)cosi(l-e2 )1/2

I n - (A/a3 )1" 2

Equations (30) through (34) will be numerically integrated to determine

the average change in orbital elements over one period due to drag.

Secular changes in orbital elements due to all the perturbations

considered will be combined to determine the total change in orbital

elements over one period. For orbits about Earth and Mars perturbations

due to the geopotential, atmospheric drag, and the Sun will be

17
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I calculated. For Earth orbits, the secular changes in mean orbital

* elements due to the Moon will also be calculated.

Planet Geometry

In this section, the radius of an oblate planet is found as a

I function of latitude. The radius is needed to calculate the ellipsoidal

altitude which is the difference between the radius of the orbit and the

i radius of the planet.

Consider an axi-symmetric planet with semi-major axis (a),

semi-minor axis (b), and radius (R) as a function of latitude (0). The

ellipticity (f) of the planet is defined in terms of the semi-major (a)

I and semi-minor (b) axes as

l f = 1 - b/a

U
or in terms of the planet's eccentricity (e)

I f = 1 - (I- e 2)Y5

A relationship to determine the planet's eccentricity is presented

I below,

1 - e2 _ (I - f)2

I
Equation (36) may be employed to approximate the planet's radius given

the latitude and the ellipticity:

I R - a[l - f sin 2 + O(f 2)] (36)

18I
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I The reasoning employed to achieve this result is presented. Consider an

ellipse circumscribed by a circle (see Figure 2). The geometry of the

ellipse dictates the relationship between the semi-major and semi-minor

axes, the eccentricity, and any point on the perimeter of the ellipse.

Y

b

R

I /IE

Figure 2. Geometry of Planet

I

2 21 = (x/a) + (y/b)

3ae = (a2- )

Eventually, an expression for R/a as a function of must be found.

2i

First, (R/a) 2is found as a function of E.

R 2 2 o 2

1 = +y xa) (/)

22

- [a cosE]
2 + [b sinE]

2

- [a cosE]
2 + [a (I - e 2) 5 sinE]2

a 2 [cos 2E + sin 2E - e2 sin 2£]

(R/a) - 1 - e 2sin2E

19
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SinE is found as a function of 0 and length y may be expressed

3 in terms of the semi-major axis, eccentricity, and sinE:

3 y = R sino

- b sinE

I a (I - e 2) 5 sinE

I These relationships are used to solve for sinE.

I sinE = (R/a)[sino/(l - e2 )* 5]

I
Consequently,I

(R/a) = [1 + F sin 20]
-

I
where

F = e2/(1 e2) [(-f)-2 - 1]

3 Equation (37) presents a relationship to evaluate the radius given

the eccentricity and latitude.

R = a (-e) (37)
3 [ 1 + e2cos ( 1*

Equation (37) will be approximated by a truncated series expansion. The

I series will be developed by expanding (R/a) and F using the binomial

expansion. Equation (38) presents the expansion of F.

F - l+ ZVV2 (f )n
n-0

20I



'I0
F X (n+l) fn (38)

n-l

Equation (39) presents the expansion of (R/a):

R/a = Z 1 2J [F sin 2 ]1n  (39)

n=O

Combining equations (38) and (39) results in equation (40) which

determines the radius of the planet as a function of latitude,

ellipticity, and equatorial radius.

R = RZl-/2) [ T(m+l) fin [sin 2n,] (40)

n=0 m=l

Truncating third order terms and higher from equation (40) results in

an approximation of the radius as a function of latitude, ellipticity,

and equatorial radius:

R = R [1 - f sin 2 + 1.5 f2 (sin 4 sin 4) + O(f 3)] (41)e

Consider the term (sin 4 - sin 2) in equation (41). Taking the

derivative with respect to 4 indicates optimums will occur at 00,

±450, and ±900. The maximum error due to the second order terms will

occur at a latitude of ±450. Consequently, ARmax is the maximum error

which will be caused by truncating second order terms:

AR x-- (3/8) R f2
max e

21
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I For Earth (R e-6 3 78 km, f=.003352[1l]) the maximum magnitude of error due

3 to second order terms is 27 m. For Mars (Re=3393 km, f-.005185[11]) the

maximum magnitude error due to second order terms is 34 m.

I Ellipsoidal Altitude

In this section, the ellipsoidal altitude (which is the difference

between the satellite's radius and the planet's radius) will be

3 developed in terms of the classical orbital elements. The radius of the

satellite is know in terms of the classical orbital elements and the

3 radius of the planet is expressed in terms of the latitude.

Equation (42) presents the equation for the ellipsoidal altitudeI
h = r -R (42)

where r is the satellite radius, and R is the radius of the planet. For

accurate evaluation equation (37) will be employed to determine R and r

3 will be determine by numerically integrating the satellite's equations

of motion.

First Order Approximation. An approximation to the

ellipsoidal altitude may be found by considering two-body motion

I (equation (3)) and using only first order terms of equation (41).

I h = a(l - e2 )/(l + e cosv) - Re(l - f sin 2 ) (43)

It's much more convenient to know the ellipsoidal altitude as a function

3 of orbital elements instead of latitude; consequently, the sin2 0 term

will be rewritten in terms of classical orbital elements. Consider the

3 orbit presented in Figure 3 with inclination (i), argument of periapsis

(w), and true anomaly (v). Using the law of sines from spherical

2



trigonometry, results in an expression for latitude in terms of

inclination, argument of periapsis, and true anomaly.

sino/sini = sin(w+v)/sin9O

sino = sini sin(w+v)

U/

w.!u

- -i

Figure 3. Relationship between Latitude and Orbital Elements

The ellipsoidal altitude may now be written in terms of orbital

elements.

h = [a(l-e 2)/(l - e cosv)] - Re [1 - f sin 2i sin2 (w+v)] (44)

Change in Ellipsoidal Altitude

The derivative of ellipsoidal altitude will be zero for the

duration of the constant altitude arc. In this section the derivative

of the ellipsoidal altitude is calculated with respect to true anomaly.

Differentiating Equation (44) with respect to the true anomaly and

employing

sin2a - 2 cosa sina
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I results in an expression for the change in ellipsoidal altitude.

dh/dv = a e (1 e2) sinv/(l + e cosy) 2  (45)

+ Re f sin i sin[2(+v)J

An arc of constant altitude would occur between v and LI2 when

I L

r[2dh
0 = Ah h J dv

LI1

It is clear the altitude will remain constant throughout the entire

I orbit if i=e=O. Also, as long as the orbital elements remain constant,

the semi-major axis only changes the altitude (not the position or

length of the arc of constant altitude). The argument of periapsis and

* inclination will cause the position of the constant arc to move while

the eccentricity must be matched with the argument of periapsis and

3 inclination to produce an arc of constant altitude.

3 Relationship between Mean and Osculating Orbital Elements

All orbital elements presented are mean values with respect to

I short term variations caused by J2. When the equations ot motion are

numerically integrated, the osculating elements are output at each time

3 step [18]. To determine the secular change in orbital elements, the

mean orbital elements are needed instead of the osculating elements.

3 The method Kwok (11], employs to transform from mean to osculating

elements is presented:

XI - Xi + 6Xi(Xi') (46)

I
24
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X. are six mean orbital elements describing two-body motion and 6X.i are

the variations in orbital elements due to J 2'X. are the osculating

elements. Recalling r - p/(l+ecos') ,and p=a(l-e 2) the change

in orbital elements may be calculated as functions of the mean orbital

elements.

5i = (3/4)J 2(R e/p')
2 sini' cosi'

x [cos2('-w.') + e'cos(v'+2w') + (e'/3)cos(3v'+2w')]

6 p = 2 p' tani' Si

6= -(3/2)J 2 (R e/p') 
2 cosi' [w' - M' + e'sinv' - (l/2)sin2''I-w')

-(e'/2)sinO.''+3w') - (e'/6)sin(3v.'+5w')]

6r = -(p'/4) 2 (R e/P') 2(3cos 2i'-l)

x [2r'(l-e 2)/p' + e'cosv'/(l+(l-e' 2)) + 1] - sin 2 P cos2(v'-Ho'))

6t =-p/)J 2 (R /p') 2(3cos 2i'-l)e'sinw'

x r.-e )l 2(pr)/( sin 2 i'(1 + e'cos&v') 2sin2(v+w,))

Let PF- (l-3cos 2 i')/[l + (l-el 2 )1/2]

S(V+W) = (J 2 /8)(R e/P') 2[6(l-5cos 2i')(V'-M')

+ 4e'sinv'(l-6cos 2i' + F1 ) + P'2 sin2v'

+ 2(5cos 2i'-2)e'sin(v-'+2w') + (7cos 2i'-I)sin2(v'+w')

+ 2cos 2i'e'sin(3v'+2w')
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I p = p' + 6p,

3 r = r' + 6r'

t t + br'

3 ~ ~~~(V+W) +o) + 6v+'

A = (p/r) - 1

3 B = (p/M)*5 r

3 The osculating elements may now be calculated:

I i = i' + 6i'

= 01' + bo'

e = (A
2 + B12)/2

v tan- (B/A)

a = p/(l-e 2 )

3 o = (c+V) - V

Transformation from osculating to mean orbital elements requires

iteration. First calculate the variations as a function of the

osculating elements then solve for the mean elements. Use these new

mean elements to calculate the variations. Continue iterating until a

group of mean elements is found which satisfy equation (46) by

3 producing the original osculating elements.

Impulsive Velocity Changes Needed to Correct Orbit

Once an orbit with a constant altitude arc which covers the correct

3 latitude range is chosen for a mission, secular changes to the orbital

elements will cause the location, duration, and altitude of the arc to

3 change. Consequently, the velocity impulse needed to negate the effects
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I of the changes in orbital elements is presented. Figure 4 demonstrates

3 the two possible cases where the change in semi-major axis is either

positive or negative. Also shown on the figure is the change in

5 argument of periapsis. In practice, the optimum starting and ending

true anomalies and eccentricity of the transfer ellipse between two

3 elliptical orbits must be chosen to minimize the impulsive velocity

change[.3:67-71]. In a Hohmann transfer, the initial and final orbits

I are circular and the transfer ellipse ranges from apoapsis to periapsis.

* In view of the fact that the orbits being considered are nearly

circular, the portion of the transfer ellipse used in this analysis will

5 arbitrarily be fixed to range from apoapsis to periapsis. When the

ratio of larger semi-major axis to smaller semi-major axis of the

1 initial and final orbits being considered is between 0 and 11.94 [3:62],

the Hohmann transfer is the transfer requiring a minimum velocity

3 impulse. The cases to correct for secular changes in orbital elements

result in a ratio of semi-major axes of about unity, with nearly

circular initial and final orbits. As a result, the impulsive velocity

3 change calculated should be near the minimum required velocity change.

The method used to determine the required velocity impulse is presented.

3 From conservation of energy in an elliptical orbit, the magnitude of the

velocity at any point on the ellipse may be determined by equation

3 (47):

5 V - (A(2/r - 1/a)) I/2 (47)

I Also for an elliptical orbit, equation (48) may be employed to calculate

3 the angle (-y) [14:83]. Angle 7 is measured from the radius vector to

the velocity vector.

I
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Original Peturbed
Orbit Orbi +

Focus

r

U- A.+

Figure 4. Geometry of Transfer Orbits

sin7-v (l+ecosv)/(l + e 2 + 2ecosv) 112  (48)

cosT-y -esinv/(l + e 2 + 2ecosv) 1 2

Considering Figure 4, point "A" represents the point where the perturbed

orbit is initially changed to follow thei transfer orbit, and point "B"

28
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is the point where the transfer orbit is changed to achieve the original

orbit. The semi-major axis of the perturbed orbit is the semi-major

axis of the original orbit (a) plus the secular change in the semi-major

3 axis over one period (Aa) and similarly the eccentricity of the initial

and final orbits are e and e+Ae respectively.

3 First, the velocity impulse needed at "A" is considered. Equation

(3) is employed to calculate the radius of the perturbed orbit at "A"

(rAlp) where the true anomaly at point "A" is A& when Aa<O, and 1800+AW

3 when Aa>O. Knowing rA I the velocity at "A" on the perturbed orbit

(VAlp) may be evaluated by applying equation (47).

5 Considering point "B", the radius of the initial orbit at "B"

(rB,i) is calculated by employing equation (3) where the true anomaly is

5 1800 when Aa<0 and 00 when Aa>O; the velocity of the initial orbit at

point "B" is calculated by employing equation (47) with the original

3 semi-major axis.

The transfer semi-major axis is found in terms of the radius of the

perturbed orbit at point "A" and the radius of the original orbit at

3 point "B",

at =(rA~ + rBi/

I
The velocity on the transfer ellipse may be determined at points "A" and

"B" by applying equation (47), with a and r (for V ) and r (for
t Alp At B ,i (o

V B,t). The transfer ellipse velocity and the initial ellipse velocity

3 at point "B" are colinear. As a result, the magnitude of the velocity

impulse required at point "B" is simply the difference between the

desired velocity (VBi ) and the velocity of the satellite on the

3 transfer ellipse (VB,t). AV B VBt - V B I

I
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The velocities at point "A" are not colinear due to the change in
argument of periapsis -- the angle between VA, t and VA,p is 190 0 --y I "

y'. Consequently,

AVA (VA,t - VA,pcos')
2 + (VA Psinl') 21/2

VA~t2  
2VA,t VApsi + VAp 2 11/2

where equation (48) is employed to calculate sin7 as a function of the

true anomaly of the perturbed orbit at point A.

The velocity impulse needed to change the plane of the orbit to

correct for the secular change in inclination (Ai) is now considered.

The velocity impulse required for this maneuver is directly proportional

to the magnitude of the velocity of the satellite; consequently, the

maneuver should be accomplished at apoapsis of the largest orbit.

If aa<0

AVAi -2VB,isin(Ai/2)1

and if aa>O

AV Ai = 2VA,pIsin(Ai/2) 1

The total change in velocity due to secular changes in semi-major axis,

argument of periapsis, eccentricity, and inclination is the sum of the

velocity impulses required at points "A" and "B", and the impulse

required to change the plane of the orbit.

AV - AVA + AVB + AVAii(49)
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5 Correcting secular changes due to the change in the longitude of

the ascending node was not considered. The eccentricity needed to

produce an orbit with a constant altitude arc is a function of

inclination, semi-major axis, argument of periapsis, J2' ellipticity,

and equatorial radius (see equation (52)). The longitude of the ascending

node (0) doesn't affect the orbital elements needed to accomplish an

orbit which contains an arc of constant altitude.
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I
3 III Numerical Methods

Search Method

I Identify Orbits with Arcs of Constant Altitude. In order to map

the combinations of mean orbital elements which produce orbits with arcs

of constant ellipsoidal altitude, the semi-major axis (a), argument of

3 periapsis (w), inclination (i), and planet were chosen as independent

variables. Several cases were considered where the planet, semi-major

3 axis, and perturbing accelerations were fixed. The eccentricity (e)

which produced arcs of constant ellipsoidal altitude was found as a

5 function of argument of periapsis and inclination. The following matrix

of independent variables was considered for each case:I
w = j(10) 05j:18

i = k(10) O.ks9I
The method employed to find values of eccentricity required an input of

3 the ellipsoidal altitude as a function of an independent variable (time

or true anomaly) over one period. The change in altitude with time (or

3 true anomaly) was calculated at each time step. The longest group of

points where dh/dtSe was found; where c is the tolerance used to sort

the derivatives. A function (F) indicating the shape of this group of

points was employed to evaluate the orbit and iterated to find the

optimum eccentricity

F - [Ah + n-
1 ] m

maxO

F - [Ahmax + 1] R S n-O

1a J-0
32U



where Ah is the difference between the maximum and minimum altitudes
max

attained in the range, n is the number of points with dh/dt - 0, S0 is

the sign of the derivative at the first point on the range and m is the

number of times dh/dt changes sign. The combination of orbital elements

which forced F to be zero were found (see Appendix A for a flow chart of

the method).

Figures 5 and 6 demonstrate changing the eccentricity changes the

satellite's altitude above the Earth. For both cases inclination is

63.440 and semi-major axis is 7000 km; however, Figure 5 has an argument

of perigee of 00 while Figure 6 has an argument of perigee of 1350.

Earth: a = 7888 km; w = 8 deog; = 63. 44 dog; ecalc 4 .863e-3

678. -

660.Q
658. 2-

C 60. .8805
~63. -. -08W~A~es

620. Z 5
600. -. / --

90z'A 0. 83 ECCENTRI CITY
588. - - - 8. 8838

8.8 8.5 1.0 1.5 2.8

TI ME (hr$)

Figure 5. Satellite Altitude as a Function of Eccentricity (Wo 00)

To get an indication of the sensitivity of the arc of constant altitude

to eccentricity, a Martian case with a large eccentricity is also

presented. Figure 7 demonstrates the changing altitude of a Martian
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I satellite as a function of eccentricity. The parameters which were held

3 constant follow: a - 3600 km, w = 00, and i = 900.

Figures 5, 6, and 7, indicate the eccentricity may differ from the

optimum by as much as .ixlO -3 and still produce a reasonably constant

arc.

I IEa'-h: a ? 78W km; w -135 dolg; 1 63. 44 dolg; etale 2.0B89-3

-6

630. OM

6 .62 .

618. B. A00815 ECCENTRICITY

688. - 8.8818

S8.8 8.5 1.8 1.5 2.8

TIME (hr)

1 Figure 6. Satellite Altitude as a Function of Eccentricity (W = 135)

3 The eccentricity required to produce an arc of constant altitude was

identified to ± .001 x 10 "3 . The largest deviation from the fitted data

I due to the curve fit was on the order of ±.01 x 10-3 (see Appendix F)

and most calculated curve fit points were within ± .003 x 103 of the

data. The largest deviations occurred at larger eccentricities where

3 larger deviations from the optimum eccentricity may be tolerated and

still produce a constant altitude arc.

I
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Mars: a = 3666 kn; W - & deg; 1 98 deg; tcal c= 7.668@-3

268. -7

238.
-= -- - 6. 88

228. 
0.08-

210.

~20. z~ 0,-.0076

196. 0. 88q ECCENTRICITY

188. .8072

6.8 6.5 1.0 1.S 2.0

TIME (hrs)

Figure 7. Sensitivity of Altitude due to Eccentricity

Two methods were used to produce the values of ellipsoidal altitude

over one period. For the two-body case, equations (44) and (45) were

simply evaluated at each time step. When perturbative effects were

considered, ASAP [11] was used to numerically integrate the equations of

motion and provide values of ellipsoidal altitude as a function of time.

A central differences scheme was then used to estimate the derivatives

as a function of time.

Curve Fit. A polynomial fit was employed to curve fit both the

two-body results and the change in eccentricity due to J2" The general

curve fit method is presented here -- independent variables which were

employed and the coefficients which resulted are presented in Section

IV.
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Ikx

F Z j C Ak,I Tk(X) T2 (Y)3 ~k=0 2=0

where

1. koO and I#0

C=l0.5 k=O or 2=0

0.25 k-0 and o=0

kx = order of the polynomial in x

ly = order of the polynomial in y

2x - (xmax +x min)
x -x .
max min

2y - (y max+Ymin)

Ymax-Ymin

The fit may only be used for interpolation, and not extrapolation;

consequently,

x . x :x
min max

Ymin -< y 5Ymax

The standard recurrence relationship utilized to calculate the Chebyshev

polynomials is presented below

To(X) 1

TI(X) = x

Tn(x) - 2xT nl(x) -T n2(x)

Choice of Independent Variables. The independent variables were

selected so a single empirical equation (good for either planet, and all

the semi-major axis and inclination combinations considered) could be

developed to predict the eccentricity which produces orbits with arcs of

constant altitude. The rational employed to choose the non-dimensional

groupings of independent variables for the curve fits is now presented.
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First, the first order equation for ellipsoidal altitude was considered.

Equation (44) was rewritten in a non-dimensional form:

e(1-e2)

fi2  = 2 + sin 2(o4-a) i#O
R efsini R fsin i (l+ecosv)

h+R =a i-Oe

It is clear from this arrangement that for a given inclination and

planet, the value of eccentricity which produces an arc of constant

altitude will depend on w and (Refsin 2i/a), while the position of the

arc will depend on P. Consequently, w and (Re fsin 2i/a) were chosen as

the independent variables used to curve fit the two-body results from

all the cases. In this term, Ref describes the planet, while sin 2i/a

describes the orbit. The change in the optimum eccentricity from

two-body motion due to the J2 term of the geopotential must also be

curve fit. The perturbing potential caused by the J2 term of the

geopotential was used to select the portion of the independent variable

dependent on planet properties. V20 is presented below for

completeness.

J2Re2  2

V20  - r3  (3sin 2isin2 (W+V) - 1)
r

The second zonal harmonic and equatorial radius were chosen to represent

the planet (J2R e2), and in order to make the variable non-dimensional,

the term (sini/a) 2 was used to describe the orbit. The value used as

2the independent variable was J2 (Resini/a)
2 . Again, this term and w were

used as independent variables to curve fit all the results for the

change in eccentricity from the two-body cases. A correction for J3

was not included. For the Earth cases consideied, the change in e

caused by J3 was insignificant (on the order of .001 x 10"3). The
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largest deviation from the J2 results due to J3 occurred for Mars

(a=3600km, i=90 ) where the change due to the J3 term was -.026 x 10-3

As Figure 7 indicates, a change of this magnitude is not enough to

significantly change the results.

Cases. Table 1 presents the cases which were considered. In each

case, the eccentricity was found which produced an orbit with an arc of

constant altitude for the following values of argument of periapsis and

inclination: u) = j(l0) 05j!18 , and i = k(10) 05k_<9

Without a specific application to determine spacecraft geometry and

attitude, choosing a drag coefficient, area, and mass become arbitrary.

For the cases in Table 1 which considered drag, S/m = .02x10-6 km 2/kg,

and CD = 2.0 [11] were chosen resulting in f = .02x10 6 km 2/kg. This is

a realistic estimate of f as typical area to mass ratios of satellites

(not including balloons), are between .002x10 "6 and .02x10 -6 km 2/kg

(8:xiiiJ.

Table 1. Cases Considered to Determine e(w,i) which Produce
Constant Altitude Arcs

Case Planet Semi-Major Axis (km) Model

1 Earth 6700 iwo-Body
2 7000
3 7500

4 6700 J2
5 J3
6 J2 + Drag
7 J3 + Drag

8 7500 J2
9 J3

10 J2 + Moon
11 J3 + Moon

12 Mars 3600 Two-Body
13 4000

14 3600 J2
15 4000
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Secular Considerations

Calculate Secular Changes in Mean Orbital Elements over One Period.

Once the orbital elements which produce arcs of constant altitude were

identified, the secular changes in semi-major axis, argument of

periapsis, inclination, eccentricity and longitude of the ascending node

were determined for several cases by varying the semi-major axis,

ballistic coefficient, and planet. The start time was not varied,

consequently, cases for the various positions of the third body were not

considered. Perturbations due to zonal harmonics up to the sixth order,

drag, and third bodies (Earth: Moon and Sun; Mars: Sun) were considered.

For perturbations due to the geopotential, equations (10) and (11) were

employed. The orbits are circular at i=0, and equations (10) and (11)

are not valid for eccentricities or inclinations of zero; consequently,

the comparisons considered only the inclination range from 150 to 900.

For perturbations due to drag, equations (30) through (34) were

numerically integrated while employing equation (22) to calculate the

density. The altitude of the satellite was calculated by applying

equation (36), and the rotation rate of the atmosphere was assumed to be

the same as the planet. Values employed to calculate secular changes in

orbital elements due to drag and geopotential are presented in Table 2.

For third body effects, equations (16) through (20) were employed. This

model requires the position of the third body be provided with respect

to an inertial reference frame centered on the planet with the x axis

aligned with the vernal equinox. The position of the third body was

calculated once per orbit. The position was found as a function of time

(in Julian centuries since epoch (T)). The time used to define the

position of the third body was a start time (input variable) plus half

the period calculated using the original mean orbital elements.
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Table 2. Values used to Calculate Secular Changes in Orbital Elements

UParameter Earth Mars Reference

121,082627 x 10 - 1.960454 x 10 -5 Earth: [20)
13-2.542 x 10-6 -3.144926 x 10 5 GEM-6 Model

14-1.609 x 10- -1.889437 x 106
5-2.192 x 10-7 2.669249 x 10 -6 Mars: [31

j65.23 x 10 -1.340757 x 10

H (kmn) 3 78.4 -13 9.98 -7Earth: [11]
p 0 (kg/rn 5.215 x 10 1.72 x 10 Mars : [10]

z0(kmn) 500 100

W a (rad/s) 7.292 x 10- 7.088 x 10- [11]

The positions which were used are presented.

Position of the Sun with respect to the Earth (ref JD: 2415020.)[5]:

a = 1.496 x 10 8km

e = 1.675104e-2 - 1.1444e-5T - 9.4e-9T 2

2

i = .4093197474 - 6.2179I0e-5T - 2.1468e-9T 2+ l.7977e-lOT 3rad

0= 0 rad

w -4.908229653 + 8.24149855e-7T + 5.17-T2+ l.22e-9T 3rad
2

M - 6.25658 + 172.0197T - 1.9548T 2- 1.22e-9T 2rad
s

Position of the Moon with respect to the ecliptic - - all angles are in

radians. (ref JD: 2415020.)

a -=384.4 x10- km
m

em - .054900489

i 8.98041le-2

m

S4583151 -19.4220295T + .571e-5T2 
-62+ 4.5766e- 3  3

mm

- 5.731515 + 129.4436005 -48356T -5 2 _.1-O 45 6-9_ 0
m m
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I The position of the Moon with respect to the Earth is required.

3 Transformations to determine the position of the Moon with respect to

the Earth instead of the ecliptic are completed using spherical

3 trigonometry and are presented below. Figure 8 demonstrates the

geometry of the orbits[5:107-109]. To find im use spherical

3 trigonometry to find a,

cosa = -cosi cosi + sini sini ' cosO
i s m s m m

where a is in the second quadrant. Now im may be found,

I im

I

Ecl i p+i c Pl ane

I6I / ,

I

I . ... nx- Plane of Earth's Equa +or

Uernal Equi nox

i Moon's Orbit

Figure 8. Geometry of Lunar Orbit with Respect to Ecliptic and Earth

I
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In order to find wm, solve for "b" using the law of cosines for angles

and ensure "b" lies in the same hemisphere as 0 '

cosb = (cosi + cosa cosi ')/(sin sini ')

w -n win+
m m

Finally, solve for 0 using the law of cosines for sides and ensurem

0 is in the same hemisphere as 0 '.m m

cosO = coso ' cosb + sinQ ' sinb cosi
m i m m

Position of the Sun with respect to Mars (reference Julian date

2448400.5)[11]

a - 227.941 x 106 km
s

e = .933969 x 102
s

is = 25.191153 deg

0s  0 0. deg

w s = -109.05076 deg

Ms = -171.60476 deg

The equations defining perturbations due to the third body require

the semi-major axis, radius, right ascension, declination and mean

motion of the third body. The methods which were employed to find these

values are presented. The radius is calculated using equation (3) where

v is approximated by an expansion in mean anomaly and eccentricity[15]

v - M + (2e - e 3/4)sinM + (5e 2/4 + lie 4/24)sin2M

+ (13/12)e 3sin3M + (103/96)e 4sin4M (50)
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The mean motion is found using the semi-major axis and mass of the third

body:

n = (/a3 )1/2

The declination (V') and right ascension (Ws) are calculated using

relationships from spherical trigonometry. The range of inclinations of

the third bodies considered in this thesis were only in the first

quadrant; consequently, declination is in the same hemisphere as (+v).

The right ascension is the sum of the longitude of the ascending node

(0) and "b". Equation (51) is employed to calculate "b" which must be

in the same quadrant as (w+v).

0' = sin- [sini sin(w+v)]

tanb = cosi tanV" (51)

Determine Orbit Stability. Finally, in order to compare the

various orbits to determine which was the most stable, the change in

velocity needed to transfer the satellite from the perturbed orbit back

to the original orbit was considered. Equation (49) was used to

determine the change in velocity.
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Cases. Table 3 presents the cases consider to determine secular

changes in orbital elements.

Table 3. Cases Considered to Determine Secular Changes in Orbital
Elements and Velocity Change as a Function of w and i

Case Planet Semi-Major Axis (km) (km2/kg)

1 Earth 6700 .Ole-6
2 .02e-6
3 .04e-6

4 7500 .Ole-6
5 .02e-6
6 .04e-6

7 Mars 3600 .Ole-6
8 .02e-6
9 .04e-6

10 4500 .Ole-6
11 .02e-6
12 .04e-6
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IV Results

Two-BodX Solutions

First, the eccentricity which produces constant altitude arcs was

found as a function of argument of periapsis and inclination while

holding the semi-major axis and planet fixed. Figures B-1 and B-2 present

the results for Earth with semi-major axes of 6700 km and 7500 km

respectively. Figures B-3 and B-4 present the results for Mars with

semi-major axes of 3600 km and 4000 km.

The eccentricities identified are all quite small and the orbits

are almost circular. As may be seen in all the figures, 6e/6w is

greatest at argument of periapses of 00 and 1800 and a minimum at 450,

and 1350; and 6i/6w is smallest for inclinations of 00 and 900. As

would be expected from equation (44), the eccentricity increases as the

inclination increases, and is zero when the inclination is zero.

Comparing Figures B-1 and B-2, and Figures B-3 and B-4, indicates the

eccentricity decreases as the semi-major axis increases.

Perturbed Solution

Figures B-5 though B-8 present the change in eccentricity due to

J2" AlthougT all the perturbations listed in Table 1 were considered,

it became apparent for a single period, the only significant effect on

the eccentricity required to achieve an arc of constant altitude was due

to the J2 term of the geopotential. For Earth, the difference between

the eccentricity found considering J3, drag, and the Moon and the

eccentricity found considering J2 was on the order of .001 x 10
-3 . For

Mars, the largest change in eccentricity due to J3 was on the order of

.01 x 10- 3 . Changes due to drag weren't considered for Martian cases.

The Martian atmosphere is much less dense than the Earth's and
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1 short term perturbations due to drag shouldn't significantly affect the

3 choice of eccentricity.

The change in eccentricity presented in Figures B-5 through B-8 is

subtracted from the eccentricity predicted using the two-body motion to

give the required eccentricity. Figures B-5 and B-6 present the results for

Earth with semi-major axes of 6700 km and 7500 km respectively. Figures

B-7 and B-8 present the results for Mars with semi-major axes of 3600 km

I and 4000 km.

Once the optimum eccentricity was found which produced constant

altitude arcs, the location, duration, and latitude range covered by the

arcs were found. The mid-latitude presented is the average of the

maximum and minimum latitudes covered by the constant altitude arcs, while

the latitude range presented is the difference between the maximum and

minimum latitudes covered. Both the duration of the arc and the

latitude range of the arc are presented for a maximum change in altitude

of 100 m and 1 km. The change in altitude is the difference between the

maximum and minimum altitudes attained by the arc. Figures C-1 through

C-12 present the results for Earth where Figures C-I through C-6 are for

the 6700 km semi-major axis orbits and Figures C-7 through C-12 are for

3 the 7500 km orbits. Figures C-13 through C-24 are the results for the

Martian cases where Figures C-13 through C-18 present the 3600 km

3 results and Figures C-19 through C-24 are for the 4000 km semi-major

axis case.

Mid-Latitude of Arcs. Figures C-1, C-7, C-13, and C-19 present the

mid-latitude as a function of argument of periapsis and inclination.

There are a large number of combinations which produce arcs with a given

mid-latitude. The arcs are positioned over the northern hemisphere when

the argument of periapsis is between 0 and 180 and are positioned over
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the southern hemisphere when the argument of periapsis is between 1800

and 3600. As inclination increases, the magnitude of the mid-latitude

of the arc increases. Of course, the inclination must be at least as

* large as the sum of the mid-latitude and half the desired latitude

range. The mid-latitude was calculated by taking the difference between

3 the maximum and minimum latitudes achieved by the arc; consequently, the

mid-latitude of polar orbits with the arc positioned over the poles (W =

I 900 and 2700) is less than 900.

Altitude of Arc. Figures C-2, C-8, C-14, and C-20 present the

altitude of the arcs as a function of argument of periapsis and

inclination. The altitude is dependent on the mid-latitude of the arc,

the argument of periapsis, and the true anomaly range covered by the

0 0
arc. At argument of periapses of 0 and 180 , the constant altitude arc

occurs at apoapsis, while the arc occurs at periapsis when the argument

of periapses are 900 and 2700.

Duration of Arc. Figures C-3, C-9, C-15, and C-21 present the

duration of the arcs where the maximum change in altitude is less than

3 100 m. When i-e-0, the arc lasts the entire orbital period; however,

the latitude range covered is zero. The duration of the arc is

reasonably constant for inclinations larger than 200 and for a given

argument of periapsis the duration decreases as the inclination

3 increases. Longer duration arcs may be produced when the argument of

periapsis is an integer multiple of 90 with the largest duration arcs

3 occurring at w - 00 or 1800. When the argument of periapsis is 00 or

1800, the mid-latitude of the constant altitude arc is positioned at 0
°

latitude. For these orbits, the symmetry of the orbit and planet are

3 aligned causing a longer constant altitude arc. Figures C-4, C-10,

C-16, and C-22 present the duration of the arcs when the change in
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altitude is less than 1 km. As the allowable altitude variation of the

arc is increased, the duration increases.

Latitude Range of the Arc. Figures C-5, C-Il, C-17, and C-23

present the latitude range of the arcs as a function of argument of

periapsis and inclination when the altitude variation is less than 100

3 m. Figures C-6, C-12, C-18, and C-24 present the latitude range when

the altitude variation is less than 1 km. In all cases, the largest

latitude coverage occurs when the argument of periapsis is 0° or 1800.

Again, this is due to the matched symmetry of the orbit and planet, and

coincides with the longest duration arcs. Also, at a given argument of

periapsis, the latitude coverage increases with increasing inclination.

The latitude range presented for an inclination of 900 at argument of

periapses of 900 and 2700 is low due to the method used to calculated

the latitude range. An orbit with these parameters will have the

* constant altitude arc positioned over the poles and when the difference

between the maximum and minimum latitudes achieved is calculated, the

resulting latitude range will be less than the range reported if the arc

was not positioned over a pole. A latitude range of about 500 is

possible while maintaining an altitude variation of less than 100 m and

5 a latitude range of up to 900 can be achieved if an altitude variation

of less than I km is acceptable.

Non-dimensionalized Results

The results from the previous cases were combined. Figure 9

presents a plot of eccentricity as a function of w and R efsin 2i/a for

the two-body cases, while Figure 10 presents the change in eccentricity

2
from the two-body cases as a function of w, and J2 (R esini/a)

The results presented in Figures 9 and 10 were curve fit producing

a single empirical equation. Equation (52) may be used with the
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U coefficients presented in Tables 4 and 5 to determine the eccentricity

3 required to produce an arc of constant altitude given the semi-major

axis, argument of periapsis, inclination, ellipticity, and the J2 zonal

harmonic of the geopotential.

i e = e 2B - Ae i#0 (52)

e=0 i=0

i where

e2B Lk= L0C Ak,I Tk( ) TI(Y2B) (53)

Ae = C Bk 2 Tk(5) T2 (Ij2) (54)

k=0 1-0

1. kO and Io0
SC= 0.5 k- or 2-0

0.25 k-0 and 1-0

3 The argument of periapses is the same for both e2B and Ae.

3 0 - ~/45.0 - 1.0

I ls 0.ca_930.

= 180. - w 90.<w-180.
w+ 180. 180.<w-_360.I

The inclination is combined with planet properties and differs for e2B

and Ae. For e2B, 12B is a function of semi-major axis, inclination,

ellipticity, and equatorial radius
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I 2B -2i 2B/ 2B(max) -1.0

' 2B - (f R e/a) sin

0 :5 i2B : .48874383 x 10-2 _ ' 2B(max)

UFor Ae, I J2is a function of semi-major axis, inclination, ellipticity,

3andJ2
1 J12 = 2i J2 32(a) - 1.0

2 .2.

'J12 = J (R e/a) sin L

0 5iJ2 :s .17418950 x 10- 2 'J2(max)

I Table 4. Coefficients for e

Ik 10 12

0 1.3382318E-2 6.6831547E-3 -8.8992362E-6I1 5.9572268E-5 3.9537390E-5 9.6394148E-6
2 2.2556540E-3 1.1263017E-3 -2.0021737E-6

3 4.6696319E-5 3.0815889E-5 7.3419897E-6
4 5.9702036E-4 3.0177004E-4 3.1364165E-6
5 2.6463970E-5 1.7652256E-5 4.. 3897306E-6

6 1.8920545E-3 9.6492837E-5 2.2358554E-6I7 8.4988295E-6 5.9054707E-6 1.6974386E-6

8 4.2832099E-5 2.2063680E-5 1.2341417E-6
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I Table 5. Coefficients for Ae

Bk,12________

3 k
o 2.4192677E-3 1.2121056E-3 1.0566496E-5
1 2.2288511E-5 1.4267904E-5 2.9502728E-6
2 4.6494823E-4 2.2535319E-4 5.4081346E-6

3 1.7652175E-5 1.1116183E-5 2.2108308E-6
4 1.7222103E-4 8.6194009E-5 6.6663719E-635 9.8102319E-6 6.3723936E-6 1.3617805E-6

6 6.7878651E-5 3.4179548E-5 3.6139002E-6
7 2.9070219E-6 2.1377139E-6 5.7416986E-7

8 1.8819281E-5 8.8447405E-6 9.3013404E-7

k 3 4 5

o 1.3977998E-5 4-5367581E-8 -2.4362035E-6II 2.0193706E-8 1.5042158E-7 -1.5487548E-7
2 1.2653309E-5 -3.2310241E-7 9.7169557E-7

3 1.9007614E-7 8.1730486E-8 -4.1539688E-7
4 7.1543029E-6 1.7824329E-6 2.3768136E-6
5 -7.8643838E-8 8.5013670E-8 7.9025722E-8

6 3.1601894E-6 1.0169085E-6 2.2980839E-6I7 -2.5954531E-7 7.5947404E-8 4.2068010E-7
8 1.0599178E-6 -2.6786479E-7 1.4068201E-6

I Figures 11 and 12 are plots of equations (53) and (54). Comparing

3 Figures 11 and 12 with Figures 9 and 10 indicates the curve fit is

sufficiently accurate. Tabulated comparisons of the data points and

3 eccentricities calculated using equation (52) are presented in Appendix

F. A discussion of the required accuracy in predicting eccentricity is

3 presented in Section III.
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U Secular Considerations

3 The secular changes in orbital elements were calculated using the

mean orbital elements which produce orbits with arcs of constant

altitude. Perturbations due to the geopotential, drag, and third bodies

were considered. The secular changes in a, e, i, w, and 0 are presented

as a function of the initial argument of periapsis and inclination. In

all cases, the initial longitude of ascending node was set to 00.

Secular Change in Semi-Major Axis over One Period. Figures D-1

through D-6 present the results for the secular change in semi-major

axis. Figures D-1 and D-2 present the results for Earth with a

semi-major axis of 6700 km and ballistic coefficients of .OlxlO "6 km 2/kg

and .04xlO- 6 km 2/kg respectively while Figures D-3 and D-4 present the

3 same results for Mars with a semi-major axis of 3600 km. In order to

consider cases in which drag doesn't play an important role, Figures D-5

and D-6 present the results for Earth (a - 7500 km) and Mars (a = 4500

km) with a ballistic coefficient of .04xlO -6 km 2/kg. Comparing Figures

D-1 and D-2 and Figures D 3 and D-4 indicate increasing the ballistic

*I coefficient increases the change in semi-major axis for low orbits.

Equation (30) is directly proportional to the ballistic coefficient and

the square of the semi-major axis, and supports this observation. For

both Earth and Mars, the minimum change in semi-major axis due to

atmospheric drag occurs at an argument of periapsis of 450 or 2250 and

an inclination of 630. In Figures D-5 and D-6, the geopotential caused

the most significant change in semi-major axis. Equation (10) indicates

the change in semi-major axis due to the geopotential will be zero when

is 00 or 1800 or i is 63.440. These areas where semi-major axis

doesn't change are clearly presented by Figures D-5 and D-6. The small

negative offset of Figure D-5 is due to atmospheric drag.
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I Secular Change in Inclination over One Period. Figures D-7 through

3 D-12 present the results for the change in inclination. Again, Figures

D-7 and D-8 are for Earth (a=6700km) and Figures D-9 and D-10 are for

3 Mars (a=3600km), where the first figure for each planet presents the

data for 0=.Olxl0 6 km2 /kg and the second figure presents data for

I =.04xlO-6 km 2/kg. Figures D-ll and D-12 present results for Earth

(a=7500km) and Mars (a=4500km) with 6=.04xlO - 6 km 2/kg. For Earth the

3 largest change in inclination was caused by the Moon in Figures D-7 and

D-11 and drag in Figure D-8. For Mars the largest change in inclination

was caused by the geopotential and Sun in Figure D-9, drag in Figure

5 D-10. and geopotential at low inclinations and the Sun at high

inclinations in Figure D-12. Comparing Figures D-7 and D-8 and Figures

3 D-9 and D-10, indicates at low altitude, high inclination and argument

of periapsis, drag significantly affects the change in inclination by

reducing the inclination. The secular change in inclination due to drag

is calculated using equation (32) which is zero when the inclination is

I zero. If all other parameters remain constant equation (32) will have

the largest magnitude when the inclination is 900.

Secular Change in Argument of Periapsis over One Period. Figures

3 D-13 through D-18 present the results for the secular change in argument

of periapsis. Figures D-13 and D-14 are for Earth (a-6700km) and

3 Figures D-15 and D-16 are for Mars (a-3600km) -- for each planet, =

.OlxlO " 6 km2/kg is presented first while 0 = .04xlO -6 km2/kg is

3 presented second. Figures D-17 and D-18 present results for Earth

(a-7500km) and Mars (a-4500km) with P - .04x10-6 km2/kg. In all cases

I considered, the largest secular change in the argument of periapsis was

caused by the geopotential. By comparing the figures, it may be

I
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I concluded that the change in argument of periapsis is not significantly

I affected by drag. The large magnitudes at low inclinations were from

the w3' W5' and w 22 components of equation (11). The change in argument

3 of periapsis is zero at an inclination of 63.40 when the argument of

periapsis is zero. Mars and Earth have the opposite sign on the change

in argument of periapsis at high inclinations -- this is due to the

difference in signs of the J5 terms of their respective geopotentials.

Secular Change in Eccentricity over One Period. Figures D-19

through D-24 present the results for the change in eccentricity. The

cases presented are in the same order as previously mentioned. In the

5 cases with the smallest semi-major axes and largest ballistic

coefficient for both Earth and Mars (Figures D-20 and D-22), the change

3 in eccentricity was due primarily to drag. For all the other cases

considered, the change in eccentricity was primarily due to the

3I geopotential. Drag increases the reduction is eccentricity -- Figure

D-20 has been shifted down relative to Figure D-19, and similarly Figure

I D-22 has been shifted down relative to Figure D-21.

Secular Change in Longitude of the Ascending Node over One Period.

Figures D-25 through D-30 present the changes in longitude of the

ascending node. The change in longitude of the ascending node was

primarily due to the geopotential in all the cases considered. All the

figures indicate, the minimum change occurs at an inclination of 900 and

the largest magnitude change occurs at an inclination of 00. The 02

term of equation (11) is a multiple of cosi, and consequently indicates

the secular change in longitude of the ascending node will be largest

when the inclination is 00 and zero when the inclination is 900
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I Velocity Impulse Required to Counteract Secular Changes. Figures

E-1 through E-6 present the velocity impulses needed to move the

satellite from the perturbed orbit to the original orbit. For all the

3 cases considered, the change in velocity was driven by the required

plane change to correct inclination. As a result, station keeping fuel

3 can be minimized by choosing an orbit which minimizes the change in

inclination.

I
I
I

I
I
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I
I
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V Conclusions

In this thesis an equation was developed to empirically determine

3 the mean orbital elements which produce arcs of minimum altitude

variation about an oblate planet. These orbits are useful for

I surveillance or scientific missions using optics with fixed focal

g lengths. The resulting orbits were considered and the characteristics

of minimum variation arcs were identified. The secular changes to the

1 mean orbital elements due to geopotential, drag, and third body

perturbations were found and the velocity impulse needed to maintain the

3 desired orbit was also calculated.

I Conclusions

1. Orbits which contain arcs of minimum altitude variation were

* identified.

2. An empirical relationship was developed to identify

combinations of the mean orbital elements which produce arcs of constant

altitude. The equation determines eccentricity as a function of

semi-major axis, inclination, argument of periapsis, the J2 zonal

harmonic, and the planet's ellipticity and equatorial radius.

e = e2B - Ae i0O (52)

e=O i=O

where

8 2

e 2B L L C Ak,l Tk( 5) TI(72B) (53)

k-O 1-0
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e T II B k, T Tk () T 10 J2) (54)

k=0 =0

The coefficients for the equation are presented in Tables 4 and 5, and

the independent variables are defined in Section IV. This curve fit is

valid for inclinations from 00 to 900 for Earth orbits with semi-major

axes greater than one Earth radius and Martian orbits with semi-major

axes greater than 3600 km. For smaller Martian semi-major axes, the

inclination range becomes limited. For Martian orbits with semi-major

3 axes of one planet radius, the equation is valid for an inclination range

of 00 to 700. The valid inclination range increases as the semi-major

axis increases until the full range of 00 to 900 is achieved for

semi-major axes greater than or equal to 3600 km.

S3. All the orbits with arcs of minimum altitude variation were

nearly circular. The orbits became more eccentric for smaller

I semi-major axes and larger inclinations.

4. The velocity impulse required to counteract secular changes

to the mean orbital elements due to a non-spherical gravitational field,

I drag, and third bodies was calculated. In all cases, the magnitude of

the required impulse was driven by the plane change to correct the

inclination. Consequently, in order to minimize station keeping fuel,

an orbit with the minimum change in inclination should be chosen.

Recommendations

1. Further work should be done to identify orbits with arcs of

minimum altitude variation over specific latitude and longitude ranges.

2. Third body perturbations of orbits with large semi-major axes

should be considered for different third body positions.
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3 Flow Chart of Method Used to Identify Orbital Elements

which Produce Minimum Altitude Variation Arcs

II
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1Appendix B

3Eccentricity Required to Produce an Arc of Minimum Altitude Variation

3Figures B-I through B-8 present the optimum eccentricity to produce
arcs of minimum altitude variation.

3Figures B-I and B-5 present results for Earth orbits with a
semi-major axis of 6700 km; Figures B-2 and B-6 present results for

IEarth orbits with 7500 km semi-major axes; Figures B-3 and B-7 present

Martian orbits with 3600 km semi-major axes; and Figures B-4 and B-8 are

Martian results with semi-major axes of 4000 km.

3Figures B-I through B-4 present solutions to the two-body problem,
while Figures B-5 through B-8 present the change in optimum eccentricity

caused by perturbations due to J2 " The optimum eccentricity for a given

argument of periapsis and inclination is found by subtracting the change

due to J2 from the two-body solution.

2

I
I
I
I
I
I
I
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Earth (a * 6788 km): T o-Body Solution
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Figure B-I. Earth (a-6700 km): Eccentricity to Produce a Constant Arc

Earth (a 7 ?588 km): Two-Body Solution
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Figure B-2. Earth (a-7500 km): Eccentricity to Produce a Constant Arc
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M1ars (a 3686 kp): Two-Body Solu'ion
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Figure B-3. Mars (a-3600 km): Eccentricity to Produce a Constant Arc

Mars (a = 0160 km): Two-Body Solukion
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Ear~h (a *6788 km~): Difference Be+ween Two-Body and J2 Soltrhons
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Figure B-5. Earth (a=6700 kmn): Change in Eccentricity due toJ2
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Mors' (a = 3680 kmn): Dhfference B wen Two-Body and J2 SolutionsI
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Figure B-7. Mars (a=3600 kr): Change in Eccentricity due to J2

Mars (a = 4080 km): Difference Betwen Two-Body and J2 Solutions
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Figure B-8. Mars (a-4000 km): Change in Eccentricity due to J2

67



I

I Appendix C

3 Characteristics of Arcs of Minimum Altitude Variation

3 Figures C-i through C-24 present the characteristics of the arcs of

minimum altitude variation.

* Figures C-i through C-6 present the results for Earth with a

semi-major axis of 6700 km. Figures C-7 through C-12 present results

I for Earth with a semi-major axis of 7500 km. Figures C-13 through C-18

present results for Mars with a semi-major axis of 3600 km while Figures

C-19 through C-24 are for Martian orbits with 4000 km semi-major axes.

3 For each of the cases considered, the first figure presents the

mid-latitude of the constant altitude arc, and the second figure

3 presents the altitude of the arc. The third and fourth figures present

the duration of the arc for a change in altitude less than 100 m and

3 I km respectively. Finally, the last two figures present the latitude

range of the arc for a change in altitude of less than 100 m and 1 km.

II
I
g
i
i
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Earth (a-670&m).:Mxd Latitude of Arc of Constant Alhid.
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Ear +h (66700<m):OurMaon of Constant Al+%+ide (delta h < .1 Ikm)I
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Figure C-4. Earth (a-6700 km): Duration of Arc Ah < ikm
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Ear+h (a-6,8,m): La+x ude Range x +nh Comns. Al iih i d (del +a h < .I km)I
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Figure C-b. Earth (a-6700 k): Latitude Range of Arc Ah < 1 km
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Earth (a-?S88): Dra+i on of Constant Al+ihide (del ta h < .1 km~)

2.0

I.
1.0

IIL

20. INCLINATION (deg)

0 . 188. 208. 388. 400.

ARGUMENT OF PERIAPSIS (deg)
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Figure C-10. Earth (a-7500 kmn): Duration of Arc Ab < Akm
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Earth (a.?58Bcr,):La+x+udv Rang. wx~ck Constant Aiiihde (delta h < .1 kmi)
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I Figure C-11. Earth (a-7500 kmn): Latitude Range of Arc Ah < .1 km
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Figure C-12. Earth (a-7500 kmn): Latitude Range of Arc Ah < 1km
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Figure C-14. Mars (a-3600 kmn): Altitude of Arc
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Mar (a368k<p:Oursiioa of Coniant Rilt+ide (del~a h < .1 km)
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Figure C-18. Mars (a-3600 kmn): Latitude Range of Arc Ah < 1km
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UN Appendix D

Secular Changes in Mean Orbital Elements

Figures D-1 through D-30 present the secular changes in semi-major

axis (D-I:D-6), inclination (D-7:D-12), argument of periapsis

(D-13:D-18), eccentricity (D-19:D-24), and longitude of the ascending

node (D-25:D-30). For each orbital element, the first two figures

present results for Earth (a = 6700 km) with ballistic coefficients of

.01 x 10 .6 km2/kg and .04 x 10 .6 km 2/kg. The third and fourth figures

present results for Mars (a = 3600 km) with ballistic coefficients of

.01 x 10- 6 km 2/kg and .04 x 10- 6 km 2/kg. The final two figures present

results for Earth (a = 7500 km) and Mars (a = 4500 km) with a ballistic

coefficient of .04 x 10 6 km 2/kg.

l
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Figure D-10. Mars(a-3600kn, fi-.O4e-6 km 2 /kg): Inclination Change
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Figure D-16. Hars(a-3600km, #-.0.4e-6 km2/kg): Arg of Periapsis Change
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Figure D-19. Earth(a-6700km, #=.Ole-6 km 2 kg): Eccentricity Change
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Figure D-20. Earth(a-6700kmn, f-.04e-6 km2 kg): Eccentricity Change
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Figure D-21. Mars(a-3600km, Ps=.Ole-6 km2 kg): Eccentricity Change
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Figure D-22. Mars(a-3600km, f8-.O4e-6 k 2 /kg): Eccentricity Change
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Figure D-24. Mars(a-4500km, 83-.04e-6 km 2A/g): Eccentricity Change
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Figure D-29. Earth(a-7500km, #-.04e-6 km2 kg): Long of Asc Node Change
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Figure D-30. Mars(a-4500km, 0-.04e-6 km2/kg): Long of Asc Node Change
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Velocity Impulse Needed to Maintain Desired Orbit

Figures E-1 through E-6 present the velocity impulse required to

maintain a given orbit which contains a constant altitude arc. The

figures are presented in the same order as the cases in Appendix D.
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Figure E-1. Earth(a-6700km, #=.Ole-6 km2/kg): Velocity Impulse
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Figure E-2. Earth(a-6700kmn, P-.O4e-6 km2 kg): Velocity Impulse
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Figure E-3. Mars(a-3600kmi, #=.Ole-6 km2 kg): Velocity Impulse
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Figure E-4. Mars(a-3600km, #-.04e-6 km 2 /kg): Velocity Impulse
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Comparison of Curve Fit with Data

Earth: a - 6700 km
i e (data) e (fit) W i e (data) e (fit)

0.0 10.0 .000157 .000157 0.0 30.0 .001295 .001291
10.0 10.0 .000112 .000112 10.0 30.0 .000919 .000913
20.0 10.0 .000096 .000096 20.0 30.0 .000779 .000781
30.0 10.0 .000088 .000088 30.0 30.0 .000713 .000717
40.0 10.0 000085 000085 40.0 30.0 .000684 .000687
50.0 10.0 .000085 .000085 50.0 30.0 .000684 .000687

60.0 10.0 .000088 .000088 60.0 30.0 .000713 .000717
70.0 10.0 .000096 .000096 70.0 30.0 .000779 .000780
80.0 10.0 .000112 .000112 80.0 30.0 .000919 .000913

90.0 10.0 .000157 .000157 90.0 30.0 .001302 .001299
100.0 10.0 .000112 .000112 100.0 30.0 .000919 .000913
110.0 10.0 .000096 .000096 110.0 30.0 .000779 .000780
120.0 10.0 .000088 .000088 120.0 30.0 .000713 .000717
130.0 10.0 .000085 .000085 130.0 30.0 .000684 .000687
140.0 10.0 .000085 .000085 140.0 30.0 .000684 .000687
150.0 10.0 .000088 .000088 150.0 30.0 .000713 .000717
160.0 10.0 .000096 .000096 160.0 30.0 .000779 .000781
170.0 10.0 .000112 .000112 170.0 30.0 .000919 .000913
180.0 10.0 .000157 .000157 180.0 30.0 .001295 .001291

0.0 50.0 .003090 .003081 0.0 70.0 .004682 .004650
10.0 50.0 .002135 .002137 10.0 70.0 .003228 .003218
20.0 50.0 .001821 .001822 20.0 70.0 .002733 .002739
30.0 50.0 .001665 .001667 30.0 70.0 .002503 .002502
40.0 50.0 .001598 .001599 40.0 70.0 .002397 .002401I50.0 50.0 .001598 .001598 50.0 70.0 .002397 .002400
60.0 50.0 .001665 .001667 60.0 70.0 .002503 .002503
70.0 50.0 .001821 .001824 70.0 70.0 .002733 .002738
80.0 50.0 .002135 .002137 80.0 70.0 .003228 .003218

90.0 50.0 .003128 .003118 90.0 70.0 .004771 .004737
100.0 50.0 .002135 .002137 100.0 70.0 .003228 .003218
110.0 50.0 .001821 .001824 110.0 70.0 .002733 .002738
120.0 50.0 .001665 .001667 120.0 70.0 .002503 .002503
130.0 50.0 .001598 .001598 130.0 70.0 .002397 .002400
140.0 50.0 .001598 .001599 140.0 70.0 .002397 .002401
150.0 50.0 .001665 .001667 150.0 70.0 .002503 .002502
160.0 50.0 .001821 .001822 160.0 70.0 .002733 .002739
170.0 50.0 .002135 .002137 170.0 70.0 .003228 .003218
180.0 50.0 .003090 .003081 180.0 70.0 .004682 .004650

0.0 90.0 .005231 .005265 100.0 90.0 .003663 .003644
10.0 90.0 .003663 .003644 110.0 90.0 .003108 .003099
20.0 90.0 .003108 .003100 120.0 90.0 .002834 .002833
30.0 90.0 .002834 .002833 130.0 90.0 .002713 .002717
40.0 90.0 .002713 .002717 140.0 90.0 .002713 .002717
50.0 90.0 .002713 .002717 150.0 90.0 .002834 .002833
60.0 90.0 .002834 .002833 160.0 90.0 .003108 .003100
70.0 90.0 .003108 .003099 170.0 90.0 .003663 .003644
80.0 90.0 .003663 .003644 180.0 90.0 .005231 .005265
90.0 90.0 .005342 .005378
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I

Earth a = 7500 km
w e (data) e (fit) w i e (data) e (fit)

0.0 10.0 .000143 .000145 0.0 30.0 .001185 .001178
10.0 10.0 .000101 .000102 10.0 30.0 .000830 .000832

20.0 10.0 .000087 .000087 20.0 30.0 .000708 .000711

30.0 10.0 .000079 .000080 30.0 30.0 .000648 .000654

40.0 10.0 .000076 .000077 40.0 30.0 .000622 .000626

50.0 10.0 .000076 .000077 50.0 30.0 .000622 .000626

60.0 10.0 .000079 .000080 60.0 30.0 .000648 .000654

70.0 10.0 .000087 .000088 70.0 30.0 .000708 .000711
80.0 10.0 .000101 .000102 80.0 30.0 .000830 .000832

90.0 10.0 .000143 .000145 90.0 30.0 .001191 .001184

100.0 10.0 .000101 .000102 100.0 30.0 .000830 .000832

110.0 10.0 .000087 .000088 110.0 30.0 .000708 .000711

120.0 10.0 .000079 .000080 120.0 30.0 .000648 .000654

130.0 10.0 .000076 .000077 130.0 30.0 .000622 .000626

140.0 10.0 .000076 .000077 140.0 30.0 .000622 .000626

150.0 10.0 .000079 .000080 150.0 30.0 .000648 .000654

160.0 10.0 .000087 .000087 160.0 30.0 .000708 .000711

170.0 10.0 .000101 .000102 170.0 30.0 .000830 .000832

180.0 10.0 .000143 .000145 180.0 30.0 .001185 .001178

0.0 50.0 .002823 .002802 0.0 70.0 .004270 .004234

10.0 50.0 .001945 .001944 10.0 70.0 .002924 .002925

20.0 50.0 .001658 .001659 20.0 70.0 .002490 .002493

30.0 50.0 .001516 .001520 30.0 70.0 .002275 .002279

40.0 50.0 .001455 .001458 40.0 70.0 .002183 .002188

50.0 50.0 .001455 .001457 50.0 70.0 .002183 .002187
60.0 50.0 .001516 .001520 60.0 70.0 .002275 .002280
70.0 50.0 .001658 .001661 70.0 70.0 .002490 .002494

80.0 50.0 .001945 .001944 80.0 70.0 .002924 .002925

90.0 50.0 .002855 .002835 90.0 70.0 .004344 .004309

100.0 50.0 .001945 .001944 100.0 70.0 .002924 .002925
110.0 50.0 .001658 .001661 110.0 70.0 .002490 .002494

120.0 50.0 .001516 .001520 120.0 70.0 .002275 .002280
130.0 50.0 .001455 .001457 130.0 70.0 .002183 .002187
140.0 50.0 .001455 .001458 140.0 70.0 .002183 .002188
150.0 50.0 .001516 .001520 150.0 70.0 .002275 .002279
160.0 50.0 .001658 .001659 160.0 70.0 .002490 .002493
170.0 50.0 .001945 .001944 170.0 70.0 .002924 .002925
180.0 50.0 .002823 .002802 180.0 70.0 .004270 .004234

0.0 90.0 .004784 .004797 100.0 90.0 .003310 .003313

10.0 90.0 .003310 .003313 110.0 90.0 .002817 .002823
20.0 90.0 .002817 .002822 120.0 90.0 .002572 .002580
30.0 90.0 .002572 .002580 130.0 90.0 .002469 .002475

40.0 90.0 .002469 .002476 140.0 90.0 .002469 .002476

50.0 90.0 .002469 .002475 150.0 90.0 .002572 .002580

60.0 90.0 .002572 .002580 160.0 90.0 .002817 .002822

70.0 90.0 .002817 .002823 170.0 90.0 .003310 .003313

80.0 90.0 .003310 .003313 180.0 90.0 .004784 .004797

90.0 90.0 .004876 .004893
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Mars: a -3600 km
i e (data) e (fit) e (data) e (fit)

0.0 10.0 .000232 .000228 0.0 30.0 .001895 .001935
10.0 10.0 .000170 .000167 10.0 30.0 .001357 .001356

20.0 10.0 .000147 .000143 20.0 30.0 .001163 .001157

30.0 10.0 .000135 .000131 30.0 30.0 .001065 .001061

40.0 10.0 .000130 .000126 40.0 30.0 .001024 .001017

50.0 10.0 .000130 .000126 50.0 30.0 .001024 .001017

60.0 10.0 .000135 .000131 60.0 30.0 .001065 .001061

70.0 10.0 .000147 .000142 70.0 30.0 .001163 .001159
80.0 10.0 .000170 .000167 80.0 30.0 .001357 .001356
90.0 10.0 .000232 .000228 90.0 30.0 .001909 .001948

100.0 10.0 .000170 .000167 100.0 30.0 .001357 .001356

110.0 10.0 .000147 .000142 110.0 30.0 .001163 .001159

120.0 10.0 .000135 .000131 120.0 30.0 .001065 .001061

130.0 10.0 .000130 .000126 130.0 30.0 .001024 .001017

140.0 10.0 .000130 .000126 140.0 30.0 .001024 .001017

150.0 10.0 .000135 .000131 150.0 30.0 .001065 .001061

160.0 10.0 .000147 .000143 160.0 30.0 .001163 .001157

170.0 i0.0 .000170 .000167 170.0 30.0 .001357 .001356
180.0 10.0 .000232 .000228 180.0 30.0 .001895 .001935

0.0 50.0 .004547 .004594 0.0 70.0 .006904 .006856
10.0 50.0 .003174 .003188 10.0 70.0 .004771 .004769

20.0 50.0 .002710 .002710 20.0 70.0 004062 .004060

30.0 50.0 .002479 .002474 30.0 70.0 .003712 .003709

40.0 50.0 .002381 .002372 40.0 70.0 .003562 .003559

50.0 50.0 .002381 .002372 50.0 70.0 .003562 .003558

60.0 50.0 .002479 .002474 60.0 70.0 .003712 .003710

70.0 50.0 .002710 .002708 70.0 70.0 .004062 .004061

80.0 50.0 .003174 .003188 80.0 70.0 .004771 .004769
90.0 50.0 .004630 .004672 90.0 70.0 .007097 .007042

100.0 50.0 .003174 .003188 100.0 70.0 .004771 .004769
110.0 50.0 .002710 .002708 110.0 70.0 .004062 .004061

120.0 50.0 .002479 .002474 120.0 70.0 .003712 .003710

130.0 50.0 .002381 .002372 130.0 70.0 .003562 .003558

140.0 50.0 .002381 .002372 140.0 70.0 .003562 .003559

150.0 50.0 .002479 .002474 150.0 70.0 .003712 .003709
160.0 50.0 .002710 .002710 160.0 70.0 .004062 .004060

170.0 50.0 .003174 .003188 170.0 70.0 .004771 .004769
180.0 50.0 .004547 .004594 180.0 70.0 .006904 .006856

0.0 90.0 .007663 .007668 100.0 90.0 .005402 .005404

10.0 90.0 .005402 .005404 110.0 90.0 .004594 .004595

20.0 90.0 .004594 .004596 120.0 90.0 .004196 .004198

30.0 90.0 .004196 .004197 130.0 90.0 .004025 .004025

40.0 90.0 .004025 .004027 140.0 90.0 .004025 .004027

50.0 90.0 .004025 .004025 150.0 90.0 .004196 .004197

60.0 90.0 .004196 .004198 160.0 90.0 .004594 .004596

70.0 90.0 .004594 .004595 170.0 90.0 .005402 .005404

80.0 90.0 .005402 .005404 180.0 90.0 .007663 .007668

90.0 90.0 .007902 .007908
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I Mars: a 4000 km
w e (data) e (fit) w i e (data) (fit)
0.0 10.0 .000214 .000212 0.0 30.0 .001755 .001777
10.0 10.0 .000155 .000153 10.0 30.0 .001248 .001246
20.0 10.0 .000133 .000131 20.0 30.0 .001068 .001065
30.0 10.0 .000122 .000120 30.0 30.0 .001000 .000977
40,0 10.0 .000118 .000116 40.0 30.0 .000940 .000936
50.0 10.0 .000118 .000116 50.0 30.0 .000940 .000936
60.0 10.0 .000122 .000120 60.0 30.0 .001000 .000977
70.0 10.0 .000133 .000131 70.0 30.0 .001068 .001066
80.0 10.0 .000155 .000153 80.0 30.0 .001248 .001246
90.0 10.0 .000214 .000212 90.0 30.0 .001767 .001789

100.0 10.0 .000155 .000153 100.0 30.0 .001248 .001246
110.0 10.0 .000133 .000131 110.0 30.0 .001068 .001066
120.0 10.0 .000122 .000120 120.0 30.0 .001000 .000977
130.0 10.0 .000118 .000116 130.0 30.0 .000940 .000936
140.0 10.0 .000118 .000116 140.0 30.0 .000940 .000936
150.0 10.0 .000122 .000120 150.0 30.0 .001000 .000977
160.0 10.0 .000133 .000131 160.0 30.0 .001068 .001065
170.0 10.0 .000155 .000153 170.0 30.0 .001248 .001246
180.0 10.0 .000214 .000212 180.0 30.0 .001755 .001777

0.0 50.0 .004201 .004225 0.0 70.0 .006373 .006346
10.0 50.0 .002921 .002926 10.0 70.0 .004389 .004393
20.0 50.0 .002492 .002491 20.0 70.0 .003737 .003739
30.0 50.0 .002280 .002275 30.0 70.0 .003415 .003417
40.0 50.0 .002188 .002183 40.0 70.0 .003277 .003278
50.0 50.0 .002188 .002182 50.0 70.0 .003277 .003277
60.0 50.0 .002280 .002276 60.0 70.0 .003415 .003417
70.0 50.0 .002492 .002491 70.0 70.0 .003737 .003738
80.0 50.0 .002921 .002926 80.0 70.0 .004389 .004394
90.0 50.0 .004272 .004295 90.0 70.0 .006538 .006511

100.0 50.0 .002921 .002926 100.0 70.0 .004389 .004394
110.0 50.0 .002492 .002491 110.0 70.0 .003737 .003738
120.0 50.0 .002280 .002276 120.0 70.0 .003415 .003417
130.0 50.0 .002188 .002182 130.0 70.0 .003277 .003277
140.0 50.0 .002188 .002183 140.0 70.0 .003277 .003278
150.0 50.0 .002280 .002275 150.0 70.0 .003415 .003417
160.0 50.0 .002492 .002491 160.0 70.0 .003737 .003739
170.0 50.0 .002921 .002926 170.0 70.0 .004389 .004393
180.0 50.0 .004201 .004225 180.0 70.0 .006373 .006346

I0.0 90.0 .007092 .007166 100.0 90.0 .004969 .004964

10.0 90.0 .004969 .004964 110.0 90.0 .004227 .004228
20.0 90.0 .004227 .004228 120.0 90.0 .003861 .003865
30.0 90.0 .003861 .003864 130.0 90.0 .003704 .003708
40.0 90.0 .003704 .003709 140.0 90.0 .003704 .003709
50.0 90.0 .003704 .003708 150.0 90.0 .003861 .003864
60.0 90.0 .003861 .003865 160.0 90.0 .004227 .004228
70.0 90.0 .004227 .004228 170.0 90.0 .004969 .004964
80.0 90.0 .004969 .004964 180.0 90.0 .007092 .007166
90.0 90.0 .007296 .007379
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